

M. L. Benabderrahmane on behalf of the DARWIN collaboration New York University Abu Dhabi, UAE

Introduction

Large-scale Xenon based dark matter detectors, that are under development, have detection capabilities for rare events beyond dark matter. DARWIN (DARk matter WImp search with liquid xenoN), a multi-ton liquid xenon detector can detect low-energy neutrinos, and also search for 0vßß decay of ¹³⁶Xe. With its 40 tons active liquid target, low-energy threshold and ultra-low background level, DARWIN will be able to detect solar neutrinos from pp and ⁷Be channels with $\sim 2\%$ precision. It will be also sensitive to low energy signals triggered by neutrino interaction originating from coherent neutrino-nucleus scattering. One source of these neutrinos is corecollapse supernovae, where DARWIN will be sensitive to all neutrino flavors.

www.darwin-observatory.org

Figure 1. A Sketch of the DARWIN Detector. The Cryostat surrounded by two shields: water Cherenkov and scintillation shield.

Physics goal is the search for WIMPs:

- elastic and inelastic scattering
- types of couplings: spin-dependent and spin-independent \bullet
- Working principle is based on dual-phase noble gas time projection chamber
 - Prompt scintillation light (S1) and delayed proportional scintillation light signal from the charge (S2) are measured
 - Both signals are used for vertex reconstruction
- It consists of:
 - Double-walled, low-background cryostat •
 - Dual phase TPC filled with ~40 tons of Liquid Xenon
 - Arrays of VUV photosensors, on the top and bottom of TPC \bullet
 - Inner shield filled with liquid scintillator(optional) \bullet
 - Outer shield filled with water
 - Cryostat is filled with \sim 50t of LXe (Liquid Xenon)

Figure 2. DARWIN cryostat encompassing, the TPC and photosensors in 50t LXe.

Potential Physics with DARWIN

Solar Neutrinos Detection

Sensitivity to $0v\beta\beta$ decay

• The energy generated by the sun comes mainly from the pp cycle where 99.76% of solar neutrinos are produced from these channels:

> $p + p \rightarrow {}^{2}H + e^{+} + \nu_{e}$ $^{7}Be + e^{-} \rightarrow ^{7}Li + \nu_{e}$

• Neutrinos are detected in DARWIN by elastic scattering:

 $v_x + e \rightarrow v_x + e$

 Assuming a 30t LXe fiducial mass and energy range 2-30 keV, DARWIN is expected to detect ~ $10^4 pp$ -v in 5 years¹ A <1% precision in pp v-flux with DARWIN will:

> Allow high precision realtime comparison between solar luminosity in photons, and luminosity inferred by the direct measurement of neutrinos

- Neutrinos are not electrically charged
 - Possibility for neutrinos to be their own antiparticle, i.e. Majorana particles
- Search for the Majorana particle and lepton number violation, through the detection of the $0v\beta\beta$ decay
- 136 Xe is a good candidate for $0v\beta\beta$ with $Q_{\beta\beta} \sim 2.46$ MeV
- The overall background in DARWIN is dominated by detector materials
- Challenge: tune DARWIN to measure spectra at both O(10keV) & O(2MeV)
- $\sigma_{\rm F} \sim 1\%$ allow DARWIN to be sensitive to $0\nu\beta\beta$

Figure 5. DARWIN expected sensitivities to the effective Majorana neutrino mass. These sensitivities assumes a 30 ty exposure of natural xenon and background dominated by the detector materials. The ultimate case with 140 try assumes no materials' background. In this case only background from ^{222}Rn , $2v\beta\beta$ and solar neutrinos from ${}^{8}B$ is considered¹.

Figure3. Differential electron recoil spectra for pp and ⁷Be-neutrinos in LXe^{1,2}

Scattering v-rates in the detector, • depend on survival probability P_{ee}

 $P_{\rho\rho} = \cos^4 \vartheta_{13} (1 - 0.5 \sin^2 \vartheta_{12}) + \sin^4 \vartheta_{13}$

- \mathbf{P}_{ee} Change of neutrinos flavor is • governed by the LMA-MSW Effect
- LMA-MSW predicts for pp neutrinos $_{0.3}$ • a tiny matter affect, i.e. vacuum dominated oscillations

- With an exposure of 30 t·y, DARWIN is sensitive to $T_{1/2} > 5.6 \cdot 10^{26}$ y with 90%C.L
- There is no theoretical preference for a Normal or Inverted Mass Hierarchy
- DARWIN is sensitive to $|m_{\beta\beta}|$ in the range of 0.02-0.04eV
- The "ultimate" case assumes 140 try without materials' background

1- J. Aalbers, et al., DARWIN collaboration, arXiv:1606.07001 2- L. Baudis et al., JCAP 01 (2014) 044